TEMPLE: LEARNING TEMPLATE OF TRANSITIONS FOR SAMPLE EFFICIENT MULTI-TASK RL

Yanchao Sun^{*}, Xiangyu Yin[†] and Furong Huang^{*} ycs@umd.edu, yinxiangyu@bupt.edu.cn ,furongh@umd.edu *University of Maryland, College Park, [†]Beijing University of Posts and Telecommunications, China

MULTI-TASK REINFORCEMENT LEARNING

Multi-task Reinforcement Learning (MTRL) studies the problem of efficiently learning a series of tasks by **knowledge transfer**.

Challenges in MTRL:

- Guarantee the sample efficiency?
- Trade-off between correctness and efficiency?
- Tasks with different state/action spaces?

Our Contributions: our proposed algorithms achieve **SOTA sample complexity** and work for tasks with **varying state/action space**.

A MOTIVATING EXAMPLE

Various "landforms" \rightarrow various slippery probabilities.

Sand: never slip; *Marble*: slip with prob 0.2; *Ice*: slip with prob 0.4. *G* types of landforms \rightarrow *G*^{*N*} different kinds of mazes (*N*: # of grids)

Our Goal: to extract and utilize modular similarities among and within tasks.

TRANSITION TEMPLATE

The Traditional Representation of Dynamics The dynamics of a state-action pair can be represented as:

$$\theta(s, a) = [p(s_1|s, a), p(s_2|s, a), \cdots,$$
$$p(s_S|s, a), r(s, a)]$$

($p(\cdot s,a)$							

Transition Template (TT): A New Representation of Dynamics By permuting the transition probability vector, we get:

 $\mathbf{g}_{(s,a)} = [\operatorname{desc}(p(\cdot|s,a)), r(s,a)]$

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

For all 100 s-a pairs in the 5×5 grid world, there are only 2 distinct TTs. Transition Templates can capture modular similarities

THEORETICAL RESULTS

Sample Complexity of O-TempLe Suppose there are *G* underlying TTs in total. For any $\epsilon > 0, 1 > \delta > 0$ 0, running O-TempLe on T tasks, each for at least $\mathcal{O}(\frac{DSA}{M^2} \ln \frac{1}{\delta})$ steps, generates at most $\tilde{O}\left(\frac{SGV_{\max}^3}{\epsilon^3(1-\gamma)^3} + \frac{TSAV_{\max}}{\omega^2\epsilon(1-\gamma)}\right)$ non- ϵ -optimal steps, with probability at least $1 - \delta$. *D*: the diameter of the MDP; ω : the error tolerance for TT identification, see the paper for more details. **Remarks.** (1) The sample complexity of RMax (for T tasks) is $\tilde{O}\left(\frac{TS^2AV_{\max}^3}{\epsilon^3(1-\gamma)^3}\right)$. (2) O-TempLe achieves linear dependence on S and A, the cardinality of state space and action space. Sample Complexity of FM-TempLe FM-TempLe on T tasks follows ϵ -optimal policies for all but $\tilde{O}\left(\frac{SGV_{\max}^3}{\epsilon^3(1-\gamma)^3} + \frac{T_1SAV_{\max}}{\omega^2\epsilon(1-\gamma)} + \frac{(T-T_1)DC^2V_{\max}}{\omega^2\epsilon(1-\gamma)}\right)$ steps with probability at

least $1 - \delta$.

 $T_1 = \Omega(\frac{1}{p_{\min}} \ln \frac{C}{\delta})$ is the number of tasks in the first phase p_{\min} is the minimal probability for a task to be drawn from \mathcal{M} . **Remarks.** (1) If $DC^2 < SA$ and $T \gg T_1$, FM-TempLe requires less samples than O-TempLe. (2) When T is large and T_1 is small, FM-TempLe can get rid of the dependence on *S* and *A*.

EXPERIMENT RESULTS

(b) 50 tasks sampled from 2 underly-(a) 100 maze tasks with random com ing maze models. binations of 3 "landforms"

DEPARTMENT OF COMPUTER SCIENCE

