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MULTI-TASK REINFORCEMENT LEARNING
Multi-task Reinforcement Learning (MTRL) studies the problem
of efficiently learning a series of tasks by knowledge transfer.

Challenges in MTRL:
• Guarantee the sample efficiency?
• Trade-off between correctness and efficiency?
• Tasks with different state/action spaces?

Our Contributions: our proposed algorithms achieve SOTA sam-
ple complexity and work for tasks with varying state/action space.

A MOTIVATING EXAMPLE
Various “landforms”→ various slippery probabilities.

Sand: never slip; Marble: slip with prob 0.2; Ice: slip with prob 0.4.
G types of landforms→GN different kinds of mazes (N : # of grids)

Our Goal: to extract and utilize modular similarities among and
within tasks.

TRANSITION TEMPLATE
The Traditional Representation of Dynamics
The dynamics of a state-action pair can be represented as:

θ(s, a) = [p(s1|s, a), p(s2|s, a), · · · ,
p(sS |s, a), r(s, a)]

Transition Template (TT): A New Representation of Dynamics
By permuting the transition probability vector, we get:

g(s,a) = [desc(p(·|s, a)), r(s, a)]
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For all 100 s-a pairs in the 5 × 5 grid world,
there are only 2 distinct TTs.
Transition Templates can capture modular
similarities

LEARNING WITH TRANSITION TEMPLATES
The Old Way: Direct Estimation

• Obtain θ̂(s, a) = [n(s,a,·);R(s,a)
n(s,a) ] once n(s, a) reaches a known

threshold m;
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Our Way: Augmented Estimation with Transition Templates

1. Rough estimation: obtain θ̂(s, a) = [n(s,a,·);R(s,a)
n(s,a) ] once n(s, a)

reaches a small known threshold ms;
2. Permutation: permute θ̂(s, a) to its corresponding TT g̃(s,a);
3. Template identification: identify the permuted estimate g̃(s,a)

as one of the existing groups of TTs ĝ.
4. Augmentation: obtain a more confident estimate θ̂(s, a) by

permuting back the accumulated knowledge of its corre-
sponding ĝ.
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ALGORITHMS FOR MTRL
O-TempLe: Online Template Learning
• Streaming-in tasks M may have different state space S, action
space A, dynamics p(·|·, ·) and rewards r(·, ·).
• # of MDPs inM can be arbitrarily large.
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1. Cluster estimations to groups of TTs;
2. Augment the estimation of dynamics

FM-TempLe: Finite-Model Template Learning
• If # of MDPs is small, we can further accelerate the learning.
Phase 1: collect and cluster MDP
models according to their TTs
Phase 2: identify the model of any
new task by its TTs.
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THEORETICAL RESULTS
Sample Complexity of O-TempLe
Suppose there are G underlying TTs in total. For any ε > 0, 1 > δ >
0, running O-TempLe on T tasks, each for at leastO(DSAω2 ln 1

δ ) steps,

generates at most Õ
(
SGV 3

max

ε3(1−γ)3 +
TSAVmax

ω2ε(1−γ)

)
non-ε-optimal steps, with

probability at least 1− δ.
D: the diameter of the MDP;
ω: the error tolerance for TT identification, see the paper for more details.
Remarks. (1) The sample complexity of RMax (for T tasks) is
Õ
(
TS2AV 3

max

ε3(1−γ)3

)
. (2) O-TempLe achieves linear dependence on S and

A, the cardinality of state space and action space.

Sample Complexity of FM-TempLe
FM-TempLe on T tasks follows ε-optimal policies for all but
Õ
(
SGV 3

max

ε3(1−γ)3 + T1SAVmax

ω2ε(1−γ) + (T−T1)DC
2Vmax

ω2ε(1−γ)

)
steps with probability at

least 1− δ.
T1 = Ω( 1

pmin
ln C

δ
) is the number of tasks in the first phase

pmin is the minimal probability for a task to be drawn fromM.
Remarks. (1) If DC2 < SA and T � T1, FM-TempLe requires less
samples than O-TempLe. (2) When T is large and T1 is small, FM-
TempLe can get rid of the dependence on S and A.

EXPERIMENT RESULTS
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(a) Online MTRL

O-TempLe (ours)
Q-learning [Watkins et al. 1992]
RMax [Brafman et al. 2003]
Abs-RL [Abel et al. 2018]

(a) 100 maze tasks with random com-
binations of 3 “landforms”
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(b) Finite-Model MTRL

FM-TempLe (ours) Q-learning

RMax FMRL [Brunskill et al. 2013)]

Abs-RL MaxQInit [Abel et al. 2018]

(b) 50 tasks sampled from 2 underly-
ing maze models.
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(c) Varying-sized MTRL

O-TempLe (ours)
RMax

(c) mazes with different sizes.
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(d) Infinite # of TTs

O-TempLe (ours)
Q-learning
RMax

(d) landform ∼mixture of Gaussian


