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MULTI-TASK REINFORCEMENT LEARNING

Multi-task Reinforcement Learning (MTRL) studies the problem
of etficiently learning a series of tasks by knowledge transfer.
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Challenges in MTRL:

e Guarantee the sample efficiency?
e Trade-off between correctness and efficiency?
e Tasks with different state/action spaces?

Our Contributions: our proposed algorithms achieve SOTA sam-
ple complexity and work for tasks with varying state/action space.

A MOTIVATING EXAMPLE

Various “landforms” — various slippery probabilities.
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Sand: never slip; Marble: slip with prob 0.2; Ice: slip with prob 0.4.
G types of landforms — G different kinds of mazes (IV: # of grids)

Our Goal: to extract and utilize modular similarities among and
within tasks.

TRANSITION TEMPLATE

The Traditional Representation of Dynamics
The dynamics of a state-action pair can be represented as:

0(s,a) = [p(s1|s,a),p(sa2|s,a), -, | IY]
p(ss|s,a),r(s,a)] o

Transition Template (TT): A New Representation of Dynamics
By permuting the transition probability vector, we get:
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For all 100 s-a pairs in the 5 x 5 grid world,
there are only 2 distinct TTs.

Transition Templates can capture modular
similarities
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LEARNING WITH TRANSITION TEMPLATES
The Old Way: Direct Estimation

e Obtain 0(s,a) = [“(S’Z’('l;f)(s’a)] once n(s,a) reaches a known
threshold m;
rrrrrrrrrrr m BN DEE

Our Way: Augmented Estimation with Transition Templates

1. Rough estimation: obtain 0(s,a) = [“(S’fm’('i;f)(s’@

| once n(s,a)
reaches a small known threshold m;

N

2. Permutation: permute 0(s, a) to its corresponding TT g ,);
3. Template identification: identify the permuted estimate g, ,)
as one of the existing groups of TTs g.

4. Augmentation: obtain a more confident estimate (s, a) by
permuting back the accumulated knowledge of its corre-

sponding g.
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ALGORITHMS FOR MTRL

O-TempLe: Online Template Learning

e Streaming-in tasks M may have different state space S, action
space A, dynamics p(-|-, -) and rewards r(-, -).

o # of MDPs in M can be arbitrarily large.

with a small threshold m,

identify the corresponding TT
append the visits to the TT

g é( s, CL) augment the estimate

ing the visits of the TT
; build model
- B with the regular threshold

1. Cluster estimations to groups of TTs;
2. Augment the estimation of dynamics

FM-TempLe: Finite-Model Template Learning

o [f # of MDPs is small, we can further accelerate the learning.
Phase 1: collect and cluster MDP e e e
models according to their TTs

Phase 2: identify the model of any

new task by its TTs.

THEORETICAL RESULTS

Sample Complexity of O-TempLe
Suppose there are GG underlying TTs in total. Forany e > 0,1 > ¢ >
0, running O-TempLe on T tasks, each for at least O(£232 In %) steps,
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probability at least 1 — 0.
D: the diameter of the MDP;

w: the error tolerance for TT identification, see the paper for more details.

Remarks. (1) The sample complexity of RMax (for T tasks) is

O (Tefffl_ ‘;f%gx ) (2) O-TempLe achieves linear dependence on S and

w2

) non-e-optimal steps, with

A, the cardinality of state space and action space.

Sample Complexity of FM-TemplLe

FM-TempLe on 7' tasks follows e-optimal policies for all but
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least 1 — §.

T1 = Q(——In &) is the number of tasks in the first phase

min )

Pmin 1S the minimal probability for a task to be drawn from M.

Remarks. (1) If DC? < SA and T > Ty, FM-TempLe requires less
samples than O-TempLe. (2) When T is large and 77 is small, FM-
TempLe can get rid of the dependence on S and A.

) steps with probability at

EXPERIMENT RESULTS

(a) Online MTRL
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(b) 50 tasks sampled from 2 underly-

(a) 100 maze tasks with random com-
ing maze models.

binations of 3 “landforms”
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(c) mazes with different sizes. (d) landform ~ mixture of Gaussian



